Mice lacking brain-derived neurotrophic factor exhibit visceral sensory neuron losses distinct from mice lacking NT4 and display a severe developmental deficit in control of breathing.

نویسندگان

  • J T Erickson
  • J C Conover
  • V Borday
  • J Champagnat
  • M Barbacid
  • G Yancopoulos
  • D M Katz
چکیده

The neurotrophins brain-derived neurotrophic factor (BDNF) and neurotrophin-4/5 (NT4) act via the TrkB receptor and support survival of primary somatic and visceral sensory neurons. The major visceral sensory population, the nodose-petrosal ganglion complex (NPG), requires BDNF and NT4 for survival of a full complement of neurons, providing a unique opportunity to compare gene dosage effects between the two TrkB ligands and to explore the possibility that one ligand can compensate for loss of the other. Analysis of newborn transgenic mice lacking BDNF or NT4, or BDNF and NT4, revealed that survival of many NPG afferents is proportional to the number of functional BDNF alleles, whereas only one functional NT4 allele is required to support survival of all NT4-dependent neurons. In addition, subpopulation analysis revealed that BDNF and NT4 can compensate for the loss of the other to support a subset of dopaminergic ganglion cells. Together, these data demonstrate that the pattern of neuronal dependencies on BDNF and NT4 in vivo is far more heterogeneous than predicted from previous studies in culture. Moreover, BDNF knockout animals lack a subset of afferents involved in ventilatory control and exhibit severe respiratory abnormalities characterized by depressed and irregular breathing and reduced chemosensory drive. BDNF is therefore required for expression of normal respiratory behavior in newborn animals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4 complement and cooperate with each other sequentially during visceral neuron development.

The neurotrophins nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT3), and neurotrophin-4 (NT4) are crucial target-derived factors controlling the survival of peripheral sensory neurons during the embryonic period of programmed cell death. Recently, NT3 has also been found to act in a local manner on somatic sensory precursor cells during early development ...

متن کامل

Mice lacking the CNTF receptor, unlike mice lacking CNTF, exhibit profound motor neuron deficits at birth

Ciliary neurotrophic factor (CNTF) supports motor neuron survival in vitro and in mouse models of motor neuron degeneration and was considered a candidate for the muscle-derived neurotrophic activity that regulates motor neuron survival during development. However, CNTF expression is very low in the embryo, and CNTF gene mutations in mice or human do not result in notable abnormalities of the d...

متن کامل

Overexpression of neurotrophin 4 in skin enhances myelinated sensory endings but does not influence sensory neuron number.

The growth factors neurotrophin 4 (NT4) and brain-derived neurotrophic factor (BDNF) are expressed in the developing skin, activate the trkB tyrosine kinase receptor, and influence the development and survival of specific types of sensory afferents. Whether each factor is capable of regulating the same or overlapping populations of cutaneous afferents during development is unknown. A previous s...

متن کامل

Stroke damage in mice after knocking the neutrophin-4 gene into the brain-derived neurotrophic factor locus.

Neurotrophins play a protective role during cerebral ischemia, and mice lacking both alleles for neurotrophin 4 (Nt4-/- ) or deficient in a single allele for brain-derived neurotrophic factor (Bdnf+/-) have increased susceptibility to cerebral ischemia. This study directly compared the biologic activities of brain-derived neurotrophic factor (BDNF) and NT4 by replacing the coding sequence with ...

متن کامل

Pacinian corpuscle development involves multiple Trk signaling pathways.

The development of crural Pacinian corpuscles was explored in neonatal mutant mice lacking nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT3) or neurotrophin-4 (NT4), or their cognate Trk receptors. Deficits of the corpuscles and their afferents were greatest in NT3, less in BDNF, and least in NT4 null mice. Deletion of NGF or p75(NTR) genes had little or ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 16 17  شماره 

صفحات  -

تاریخ انتشار 1996